При каких значениях а функции у=ax^3-3x^2+2x убываетт на всей числовой прямой

Для анализа промежутков возрастания/убывания функции y(x) найдем ее производную:
y'(x)=3ax^2-6x+2
Чтобы функция y(x) убывала на всей числовой прямой, необходимо, чтобы y'(x) < 0 для любых x.
y'(x) — парабола. Чтобы парабола полностью была ниже оси 0x, необходимо, чтобы она имела ветви, направленные вниз. То есть 3a<0. Или же a<0. При этом с осью 0x не должно быть точек пересечения. Это значит, что дискриминант квадратного трехчлена должен быть меньше 0.
D=(-6)^2-4*3a*2=36-24a<0 => 24a>36, a>1.5.
Система неравенств a>1.5 и a<0 решений не имеет, поэтому функция y(x) ни при каких a не будет постоянно убывающей.

Оцени ответ
Не нашёл ответ?

Если тебя не устраивает ответ или его нет, то попробуй воспользоваться поиском на сайте и найти похожие ответы по предмету Алгебра.

Найти другие ответы

Загрузить картинку
Самые свежие вопросы

Алгебра, опубликовано 20.05.2018

Помогите пожалуйста

Алгебра, опубликовано 20.05.2018

Помогите пожалуйста!

Алгебра, опубликовано 20.05.2018

Помогите пожалуйста.

Алгебра, опубликовано 20.05.2018

ПОМОГИТЕ ПОЖАЛУЙСТА!!

© Задачки.net