Помогите, пожалуйста, с заданием.
Случайным образом выбирают одно из решений неравенства 1?|x-3|?5. Найдите вероятность того, что оно является решением неравенства:
а) |x|?2;
б) |x-6|?2;
в) |x|?1;
г) 1?|x-6|?2



Исходное неравенство распадается на совокупность систем:

\left[\begin{array}{l} \left\{\begin{array}{l} x < 3 \ , \\ 1 \leq 3-x \leq 5 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 3 \ , \\ 1 \leq x-3 \leq 5 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} \left\{\begin{array}{l} x < 3 \ , \\ -5 \leq x-3 \leq -1 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 3 \ , \\ 1+3 \leq x \leq 5+3 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} \left\{\begin{array}{l} x < 3 \ , \\ -2 \leq x \leq 2 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 3 \ , \\ 4 \leq x \leq 8 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} x \in [ -2 ; 2 ] \ , \\ x \in [ 4 ; 8 ] \ ; \end{array}\right

x \in [ -2 ; 2 ] \cup [ 4 ; 8 ] \ ;



а) неравенство эквивалентно:

-2 \leq x \leq 2 \ ;

x \in [ -2 ; 2 ] \ ;

Отрезок данного решения полностью совпадает с одним из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет 1/2 .

о т в е т :    \frac{1}{2} = 0.5 = 50 \% \ ;



б) неравенство эквивалентно:

-2 \leq x-6 \leq 2 \ ;

6-2 \leq x \leq 2+6 \ ;

x \in [ 4 ; 8 ] \ ;

Отрезок данного решения полностью совпадает с одним из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет 1/2 .

о т в е т :    \frac{1}{2} = 0.5 = 50 \% \ ;



в) неравенство эквивалентно:

-1 \leq x \leq 1 \ ;

x \in [ -1 ; 1 ] \ ;

Отрезок данного решения составляет половину от одного из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет    \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} = 0.25 = 25 \% \ ;

о т в е т :    \frac{1}{4} = 0.25 = 25 \% \ ;



г) неравенство распадается на совокупность систем:

\left[\begin{array}{l} \left\{\begin{array}{l} x < 6 \ , \\ 1 \leq 6-x \leq 2 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 6 \ , \\ 1 \leq x-6 \leq 2 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} \left\{\begin{array}{l} x < 6 \ , \\ -2 \leq x-6 \leq -1 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 6 \ , \\ 1+6 \leq x \leq 2+6 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} \left\{\begin{array}{l} x < 6 \ , \\ 4 \leq x \leq 5 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 6 \ , \\ 7 \leq x \leq 8 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} x \in [ 4 ; 5 ] \ , \\ x \in [ 7 ; 8 ] \ ; \end{array}\right

x \in [ 4 ; 5 ] \cup [ 7 ; 8 ] \ ;

Каждый из двух отрезков данного решения составляет четверть от одного из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет    \frac{1}{4} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8} + \frac{1}{8} = \frac{1}{4} = 0.25 = 25 \% \ ;

о т в е т :    \frac{1}{4} = 0.25 = 25 \% \ ;



Оцени ответ
Не нашёл ответ?

Если тебя не устраивает ответ или его нет, то попробуй воспользоваться поиском на сайте и найти похожие ответы по предмету Алгебра.

Найти другие ответы

Загрузить картинку
Самые свежие вопросы

Алгебра, опубликовано 20.05.2018

Помогите пожалуйста

Алгебра, опубликовано 20.05.2018

Помогите пожалуйста!

Алгебра, опубликовано 20.05.2018

Помогите пожалуйста.

Алгебра, опубликовано 20.05.2018

ПОМОГИТЕ ПОЖАЛУЙСТА!!

© Задачки.net